Neural network methods for automatic person pose estimation in rhythmic gymnastics exercises
DOI:
https://doi.org/10.31558/2786-9482.2023.1.4Keywords:
transformer, classification, rhythmic gymnastics, perceptron, pose estimation, video stream.Abstract
In rhythmic gymnastics, evaluating the performances of female athletes is a complex subjective task due to the need to consider both the technical characteristics of dynamic exercises and the aesthetic perfection of individual scenes and the composition as a whole. The article presents the results of a study aimed at developing a program for automatically detecting the postures of female athletes during rhythmic gymnastics exercises. The development of the model is preceded by a study of the current scoring rules, considering the complexity of the athlete's movements. For the study, a special dataset was created to determine the gymnasts' poses, which included scored elements and unscored positions. The dataset contains freeze frames from the video of the competition and photo reports. Two computer vision methods are used to identify the poses: MediaPipe Pose and ViTPose. MediaPipe Pose allows for real-time detection of 33 3D landmarks due to its high performance. ViTPose provides high accuracy using visual transformers. A comparative analysis of these two methods is carried out, highlighting the strengths and limitations of each of them. A multilayer perceptron model has been developed to classify sports elements based on recognized poses. The model was trained using back-propagation of error based on Adam's gradient descent method. After training the model on the author's dataset, high accuracy in the classification of gymnasts' poses is achieved. This study is an intellectual component of a future system for automatic real-time detection of an athlete's pose for a more reliable and efficient evaluation of rhythmic gymnastics performances. The proposed approach to combining computer vision and machine learning methods can be extended to improve sports analysis in other related disciplines.
References
Fédération Internationale de Gymnastique. URL: https://www.gymnastics.sport/site/ (дата звернення: 28.05.2023).
2022 – 2024 Code of Points. URL: https://www.gymnastics.sport/publicdir/rules/files/en_2022-2024%20RG%20Code%20of%20Points.pdf (дата звернення: 27.05.2023).
Sierra-Palmeiro, E., Bobo-Arce, M., Pérez-Ferreirós, A., & Fernández-Villarino, M. A. (2019). Longitudinal Study of Individual Exercises in Elite Rhythmic Gymnastics. Frontiers in Psychology, 10. DOI: 10.3389/fpsyg.2019.01496.
Díaz-Pereira, M. P., Gómez-Conde, I., Escalona, M., & Olivieri, D. N. (2014). Automatic recognition and scoring of Olympic rhythmic gymnastics movements. Human Movement Science, 34(1), 63–80. DOI: 10.1016/j.humov.2014.01.001.
Bearman, A., & Dong, C. (2015). Human pose estimation and activity classification using convolutional neural networks. CS231n Course Project Reports.
Verma, M., et al. (2020). Yoga-82: A new dataset for fine-grained classification of human poses. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 1038–1039.
Olympics Gymnastics: Rhythmic Gymnastics – Individual All-Around-Qualification 1&2 (2020). Tokyo 2020. YouTube. URL: https://www.youtube.com/watch?v=uRzmkLF8MVI (дата звернення: 27.05.2023).
Olympics: FULL Rhythmic Gymnastics Individual All Around Final at Tokyo 2020 (2020). YouTube. URL: https://www.youtube.com/watch?v=v6ZuroWdLTs (дата звернення: 27.05.2023).
Альбоми зі зйомок на спортивних турнірах фотографа Марії Музиченко. URL: https://muzychenko.photos/our-services/sports-photography (дата звернення: 27.05.2023).
Портфоліо Ігоря Сахацкого. URL: https://sakhatskyi.com/portfolio/ (дата звернення: 27.05.2023).
Ukrainian RG Federation: Viktoriia Onopriienko Ball Qual 26,200 – World Championships Kitakyushu 2021 (2021). YouTube. URL: https://www.youtube.com/watch?v=IKzuWUIe8Rc (дата звернення: 27.05.2023).
GitHub – Google / Media Pipe: Cross-platform, customizable ML solutions for live and streaming media. GitHub. URL: https://github.com/google/mediapipe (дата звернення: 27.05.2023).
Xu, Y., Zhang, J., Zhang, Q., & Tao, D. (2022). Vitpose: Simple vision transformer baselines for human pose estimation. Advances in Neural Information Processing Systems, 35, 38571–38584.
Bielecki, A. (2019). Models of neurons and perceptrons: Selected problems and challenges. Studies in Computational Intelligence. Vol. 770. Springer Cham, 156 p. DOI: 10.1007/978-3-319-90140-4.
А. Р. Нескородєва (Україна). А. C. 116622 Україна, УКРНОІВІ. Комп’ютерна програма “Pose estimation for sports (Rhythmic gymnastics)”. № с202300058; заявка 06.01.2023; опубл. 01.03.2023.
ML Kit. URL: https://developers.google.com/ml-kit/vision/pose-detection?hl=en (date of access: 27.05.2023).