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knight pseudorandom walk; position and ending position are always different. A solution of the knight
break-in probability; open tour problem is similar to a sequence of pseudorandom numbers
similarity rate. used to map data into non-readable yet usable information. The knight

open tour problem has a manifold of solutions for a starting position of the
knight depending on the chessboard size. Solutions of the knight open tour
problem, which appear like a random series of knight positions, i.e. a
pseudorandom walk, are used to further improve balance of the
scrambling simplicity and productivity, where the main indicators are the
break-in probability and similarity index. The break-in probability is
dramatically decreased by taking into account a knight pseudorandom
walk manifold for a starting position on a given chessboard. A pessimistic
estimation of the break-in probability for an 8x8 chessboard is less than
107"°. A similarly expected estimation for an 8x8x8 chessboard is less
than 107°. A distinct knight pseudorandom walk (out of a manifold of
pseudorandom walks) is built online by a given seed integer for a
pseudorandom number generator. The scrambled data vector is built
online as well in linear runtime complexity. Meanwhile, the similarity index
is acceptable, rapidly dropping as the chessboard size is increased (for
bigger multidimensional data arrays). A knight pseudorandom walk is
determined by the chessboard size, the starting position, the way to
vectorize the knight pseudorandom walk, and the pseudorandom number
generator seed allowing to specifically move the knight onward through
situations with multiple possible moves of the knight. The knight-open-
tour scrambler has 10" to 10* times lower break-in probability
compared to an ordinary pseudorandom number generator, depending on
the chessboard size and the starting position of the knight.
DOI: 10.31558/2786-9482.2024.1.1

Introduction
The main technical purpose of data privacy is to achieve sufficiently low likelihood of

deliberately intruding, spoofing, hacking, delaying, distorting, etc. [1, 2]. In particular, data is
scrambled by altering or shuffling its entries in accordance with an algorithm whose return is
difficult to decipher while the scrambled data is still usable for legitimate demonstration [3, 4].
Within personal and limited access use, the algorithm must be unknown for attackers, or at least it
must be unlikely to determine it within reasonable time [5, 6]. Another plausible requirement is to
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maintain the algorithm as simple as possible due to its frequent application should not affect the
operation speed [7, 8].

Basically, the requirement of scrambling algorithm simplicity often prevents from using
shufflers based on pseudorandom number generators [9]. The latter utilize rather complex routines
for generating a stream of pseudorandom numbers, but the main reason is the seed change [10, 11].
Although the range for the initial value of a pseudorandom sequence is sufficiently wide, the
information about the seed change should be constantly sent to the recipient that increases the
likelihood of break-in, if the type of the pseudorandom number generator is known [12]. On the
other hand, cipher algorithms and cryptographic hashes are high-quality pseudorandom number
generators, but generally they are considerably slower than non-cryptographic random number
generators [13, 14]. Therefore, it is still desirable to develop a much wider list of simple and fast
pseudorandom number generators for tasks of scrambling, regardless of the publicity of its use.

Goal and tasks
Issuing from the growing demands for security and reliability of data privacy and storage

policy, the goal is to suggest a new scrambling technique which would provide improved
cryptographic properties compared to a peer scrambling technique. The improved cryptographic
properties imply decreasing the likelihood of break-in along with decreasing similarity between the
initially given data and the scrambled data.

One of the simplest algorithms having been studied for possible scrambling is based on
building solutions to the knight open tour problem [15, 16]. In fact, there are a few such algorithms,
both exact and heuristic, which have slightly differing computational efficiency and coverage (some
solutions may be omitted by a heuristic, whereas they are found by an exact approach, although not
always within a reasonable time). A solution of the knight open tour problem is similar to a
sequence of pseudorandom numbers used to map data into non-readable yet usable information. The
first task is to describe the solution application. The second task is to estimate its main computable
parameters for the worst-case scenario compared to an ordinary generator of pseudorandom
numbers. The break-in probability and similarity rate will be estimated under the same case along
with estimating operation speed and other limitations.

Pseudorandom walk

Denote by
U=[u], (1)
an N-dimensional array of data, where
N
F=XM, (2)
n=1
is the format of the array,
I={i,},, 3)

1s its indexation with indices
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i,e{lLM,} Vn=1N, (4)

M, is the length of dimension n, M, € N\{l}, and u, is a numerical or symbolical entry indexed

by (3), (4). The total number of entries in array (1) is:

L= ﬁMﬂ . (5)

A scrambler s must take only the starting position:

L={i"" by i ellM,} vn=1,N (6)

for an algorithm A, whereupon the scrambled data is an array
Y=s5(U,4,1). (7)

Obviously, the number of entries of array (7) is (5), but its format may be changed from (2) into

B
=X K, (8)
b=l
by
B
L= HKb . 9)
b=l
So,
Y=[y], (10)
is the scrambled B -dimensional data array of format (8) with indexation
J={inhra (11)
and indices
Jye{LK,} Vb=1,B, (12)

by dimension b of length K,, K, € N\ {1}, where

b =tude;- (13)
In particular, B=1, 1. e. array (1) is scrambled into a vector (7) of length (9), where
Y=[y],6 (j=LL). (14)

Another possibility, less applicable than (14), is dimensionality reduction. For instance, an
M, xM,xM, matrix (that can represent some color image for M, =3) is scrambled into an

M xM,M,, MM,xM,, or MM,xM, matrix, regardless of possible transposition. In

vectorizing-based applications, an M, xM,xM, matrix data is scrambled into a 1xM M,M,

3
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vector (obviously, a column vector is also possible).

The knight open tour problem whose solutions appear like a random series of knight positions
[15, 16], i. e. a pseudorandom walk, is a promising approach to scrambling. The knight starts its
open tour at a horizontal position x, and a vertical position y, on a chessboard of size CxC, where

x €{l,C! an y, € 1,C}. Then the night moves onward according to an algorithm. In this way,
e, C d y, €11, C}. Then the knigh d accord lgorithm. In th

the chessboard is completely covered by the knight, and a definite sequence of C* integers
indicating the successive positions of the knight is formed. This sequence can be formed in two
ways, each of which has two versions. If the chessboard squares are enumerated by the number of
the knight move, then a matrix

B= [cik ]CxC >

where ¢, is the number of the knight move at chessboard square {i, k} (¢, =1 for i=y,, k=x,), is

vectorized either by concatenating its columns or concatenating its rows. On the other hand, a

vector
M=[m] .
1s formed, where either
m,=C-(i-1)+k for ¢, = j (15)
or
m,=C-(k-1)+i for ¢, = j. (16)

So, the knight pseudorandom walk can be represented either by the vectorized matrix B or vector
M. It is easy to see that the two versions of the vectorized matrix B are directly connected.
Knowing one version, the other one is obtained via a simple permutation pattern. The two versions
of vector M by (15) or (16) are directly connected as well, where one version is obtained from the
other one via another simple pattern which is the inverse to either (15) or (16).

Scrambler estimations and parameters
The break-in probability can be estimated as follows. The knight open tour problem has a

great deal of solutions for a starting position of the knight depending on the chessboard size CxC.
Denote this number by S,(C;x,, »,). There are C? starting positions on the chessboard of size
CxC. For a definite chessboard size and a definite starting position, there are four versions of the
pseudorandom walk for a distinct solution out of S,(C;x,, y,) solutions. Hence, an estimation of
the break-in probability is
Beatcin = 4C2.§ (IC. N .
A(Cx, )

(17)

On an 8x8 chessboard, for instance, there are more than 10" knight open tours for a starting
position, i. e. S,(8; x,, ;) > 10" [17]. Therefore, the break-in probability (17) is
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h _ <107 18
brealc-in 4-82'SA(8;X1,)’1) 256'SA(8;x1’y1) "

for an 8x8 chessboard. The ending position of the knight cannot be {x,, ,} but distinct open tours
can end at the same position. However, number S,(C; x,, y,) depends on the starting position. If it

is closer to a corner of the chessboard, this number is less than the number of knight open tours
starting closer to the chessboard center. This is explained by the knight at a corner has fewer ways
to move onward. Thus, many tours have a zigzag pattern on the chessboard borders (Figure 1). If
the chessboard size is increased, the pattern may remain (Figure 2).
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Figure 1. A set of 12 distinct pseudorandom walks on an 8x8 chessboard, each of which starts at
the same square (from the top left corner), where the zigzag border pattern is seen

Nevertheless, the zigzag pattern becomes less influential on bigger chessboards. It is quite
apparent by comparing pseudorandom walks in Figure 2 to those in Figure 1. This means it is more

likely that number S, (2C; x,, y,) varies relatively less across all possible 4C* starting positions on
a (2C)x(2C) chessboard than, say, number S,(C;x,, y,) varying across all possible C* starting

positions on a CxC chessboard. Therefore, bigger chessboards are more efficient to produce
higher rates of randomness.



Ukrainian Journal of Information Systems and Data Science Volume 2, Issue 1, 2024

L N [~ N \J AN [
LT Soo DI
(AT VA { K¢ i~ ~ A N
{ J Uhzs alnz IRL G ) VA &
- 4 NS % A > ” [ > , A B\ > §Cé
(7 = a DAUAK % D N
Ry = = AR % \94 e %g 4
LA ™~ I~ \ g \
0 7 AR RS 5 ) 3
% N » Nk
KEnA 7 % 3 \ SR T R 7D WKNE W]
D % R 4 , K s
A\
% ) 5 VIR ) DS » W )
KaEs 1%y 3N SRR R AR A AR
( T 7
DZE L 30 vg_“g% D % N
o AESARGEAEYARANa) e Gl Eina
o AN NRNIIE A AT 6
N YA ToP ARUEGI KPR
B “os H T TS U &N
0 MM NAS % s : N v
y ~
'S BTN AL % LTS 8 7 % EUSVAGAR
{ N 3 n NS \/\%\ o —8‘0 nﬁ«g/ " i
TSRS = S Cicaciciciceiceana s
qgQ ] =3 &%“; Akl | e :j% 7 2=ASE S Sesmseas zg
7 7 <0 Yy A’Q 7 7 7 Ky
/g’g\ \ kA g%—_ké > [~ . L S . W
b AT IR AR ASAGAT O SUSRA) Sa
v { q BN ( —Qfo X
L PRI Wl NS S W
X/ > M N C‘g— . {/ ; g \ N o C‘%
5 S { J )
N (7 3 « SN
N —2?5 W) N N N N o3
Kz, 7 67 W = PN AN Y XD
% 1/ N I~ N N s ¢ 7 ~e < )
- A\
¢ g/ —g% ) ) WD g
_gb { =0 3 N i€ U
- /\A 2())7 { \;% = 3 A\ ¥
< ?7?%(( IS ) ! LG DI (L PRE
: Y DUEMNIR G IS 2 (. NN v 5 : =h i
T Ya " K 4 7 )
Ay AN e SN maL
A i il 1l o 0 A e i s A A

Figure 2. A set of four various pseudorandom walks on a 32x32 chessboard, each of which starts
from the top left corner, where the zigzag border pattern is still seen reminiscent of that in Figure 1

So, starting an open tour off one of four corners, either close to it or peculiarly at chessboard
squares {1,1}, {1,C}, {C,1}, {C,C}, is the worst-case scenario for break-in probability (17). In

such a case, the break-in probability is higher than in any other case. Compared to shuffler-based
scrambling, it is important to know a ratio of break-in probability (17) to the shuffler-based
scrambling probability (which, obviously, is L™ as the shuffler algorithm is presumed to be known
and it can be defined by the position of an integer value from 1 to L ). This ratio, called the break-in
probability rate (BPR) for further consideration, must be estimated under the worst-case scenario
with using (18) as reference value. Other important parameters are the similarity index and
computation time ratio. The latter is calculated separately for scrambling and descrambling as a
ratio of knight-open-tour time to shuffler time. The respective scrambling time rate (STR) and
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descrambling time rate (DTR) must be close. The similarity index is calculated as the element-wise
number of coincidences in multidimensional data array (1) and the scrambled data array (10)
divided by L. This index is written as a knight-open-tour scrambler rate (KTSR) and a shuffler
scrambler rate (SSR), whereupon a similarity rate (SR) is calculated as a ratio of KTSR to SSR.
Computational experiments are carried out on a single CPU Intel Core 15-7200U@2.50GHz
in Matlab 2018a. The data are intended to emulate streaming images, so for this purpose integers
between 0 and 255 are generated by a pseudorandom number generator with a known seed. Table 1
presents the mentioned parameters for signed 16-bit integers between 0 and 255 in
multidimensional data arrays for L = C* (here and below the comparative rates are averaged over
100 repetitions), where it is clearly seen that the knight-open-tour scrambler and shuffler scrambler
have roughly the same operation speed. SR varies badly, though, for smaller sizes of the
chessboard. The estimation of BPR is made with respect to (18), where the tour starts at chessboard
square {1,1}. Approximately the same parameters hold for numbers with single precision storage
(Table 2) and numbers with double precision storage (Table 3) almost independently of the data
dimensionality (in Matlab, vectorization or reshaping arrays is executed within a few
microseconds), where the numbers are generated starting at the same seed of the pseudorandom
number generator. Nevertheless, KTSR and SSR are a few times smaller than those in Table 1.
Overall, the scrambler is defined by four parameters: the chessboard size, the starting
position, a specific integer 6, determining one of S,(C; x,, y;) open tours, and one of four ways to

obtain a 1xC* vector representing the knight pseudorandom walk. Integer o, could be called the

walk seed and it is a number between 1 and S, (C; x,, y,):

c, e{l,SA(C;xl,yl)}.

This integer predetermines a distinct knight pseudorandom walk by setting the pseudorandom
number generator seed to a definite integer. Algorithm A4 building the open tour online frequently
stumbles over situations when there are a few possible onward moves of the knight. One of such
moves is further selected by generating a random value and comparing a threshold to this value.

Table 1. Comparative rates for signed 16-bit integers between 0 and 255

C 10 20 30 40 50 60 70 80 90 100 | 110 | 120 | 130 [ 140

KTSR [0.0339{0.0064{0.0046{0.004710.0051{0.0042(0.0043]0.0042(0.004210.0042] 0.004 | 0.004 | 0.004 | 0.004

SSR {0.0134]0.0063| 0.005 |0.0045]0.004410.0039] 0.004 {0.0041]| 0.004 | 0.004 [ 0.004 | 0.004 | 0.004 | 0.004

SR (2.5298]1.0278( 0.922 | 1.044 {1.1799]1.0676]1.0672(1.0194]1.0583(1.0474]|1.0006{1.0059(1.0046]0.9925

STR | 1.007 [1.164810.9676( 1 0.99 10.9961{0.971710.9799]0.9953(0.9637]|0.9786{0.9966(0.967210.9845

DTR (1.0863]1.1381( 1.062 |1.0022(0.9934] 0.957 {1.0126]0.9986]0.9858(1.0097| 1.008 {1.0123]0.9979]1.0134

BPR | 107'¢ [ 10716 [ 10716 | 10716 | 107 ] 10 ] 10 | 1077 ] 1077 | 1077 | 1077 | 10777 | 1077 | 107V
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Table 2. Comparative rates for numbers with single precision storage

C 10 20 30 40 50 60 70 80 90 100 [ 110 | 120 | 130 [ 140

KTSR| 0.03 {0.0025{0.0011]0.0006{0.0012]0.0003{0.0004|0.0002{0.0002(0.0003]0.0001{0.0001{0.0001]0.0001

SSR {0.0102]0.0027{ 0.001 |0.0007{0.0004{0.0002]0.0002(0.000210.0001{0.0001{0.0001]0.0001{0.0001]0.0001

SR (2.9411]0.9345(1.0638]|0.9615(2.9411|1.1627]1.9607(1.0309]1.7857(3.2258|1.1111]0.9345(0.8849|1.8867

STR ]1.0208{1.0489]0.9749(1.0002]10.9649(0.9911] 0.988 |0.9781[0.978210.9829(0.9705(0.9802]0.9667(0.9877

DTR (1.1964]1.0257(1.0046]0.9985(1.0009]0.9953{1.0032{1.0192]1.0039( 1.004 |1.0063]0.9963(1.0081|1.0128

BPR | 10716 | 107 [ 107 | 10716 | 107 [ 107" | 10716 | 1077 [ 10717 | 1077 [ 10777 | 10717 | 1077 [ 1077

Meanwhile, a scrambling technique can be applied multiple times. Thus, another quadruple of
scrambler parameters should be assigned. Table 4 presents the comparative rates for numbers with
double precision storage by double scrambling with the same chessboard size, where the tour at the
second stage scrambling starts at chessboard square {4,4}. In general, these rates do not much

differ from those in Tables 1-3, but BPR now is much better. KTSR and SSR are comparable to
those in Tables 2 and 3. However, if the second stage scrambling chessboard is of size
(C/2)x(C/2), then KTSR is improved in about six times (Table 5). In addition, STR and DTR,

varying between 0.5802 and 0.7547, are much favorable for the knight-open-tour scrambler. Its
break-in probability increases, though, due to the smaller second stage scrambling chessboard. The
decrement is hardly noticeable, anyway. This is an acceptable tradeoff for decreasing similarity
along with speeding up the scrambling (descrambling) process.

Table 3. Comparative rates for numbers with double precision storage

C 10 20 30 40 50 60 70 80 90 100 [ 110 | 120 | 130 | 140
KTSR| 0.03 {0.0025{0.0011]0.0006{0.0012]0.0003{0.0004|0.0002{0.0002(0.0003]0.0001{0.0001{0.0001]0.0001
SSR {0.0102]0.0027{ 0.001 |0.0007{0.0004{0.0002]0.0002(0.000210.0001{0.0001{0.0001]0.0001{0.00010.0001
SR {2.9411]0.9345[1.0638]|0.9615(2.9411]1.1627]1.9607(1.0309]1.7857(3.2258|1.1111]0.9345(0.8849|1.8867
STR |1.0555[1.0086]0.9855(1.0048]0.9898(0.9811| 0.988 10.9822[0.9726]0.9973( 0.974 [0.9701]0.9859(0.9931
DTR (1.2022]1.0001(1.0542]0.9997(1.0339]0.9759{0.9969]1.0064|1.0168(0.9984]1.0122{1.0023{0.9902]1.0099
BPR | 10716 | 1071 [ 107 | 10716 | 1071 [ 107" | 107" | 10777 [ 10717 | 10717 [ 10777 | 10717 | 10717 [ 10777

Table 4. Comparative rates for numbers with double precision storage by double scrambling

C 10 20 30 40 50 60 70 80 90 100 [ 110 | 120 | 130 | 140

KTSR| 0.02 {0.0025| 0O ]0.0019{0.0008]0.0017{0.0002]|0.0005{0.0005(0.0005]0.0003{0.0002{0.0004]0.0001

SSR {0.0095]0.0026{0.0014]0.0006{0.0004{0.0003]0.0002(0.000210.0001{0.0001{0.0001]0.0001{0.0001]0.0001

SR (2.105210.9615( 0 |2.9126(1.8181]|6.0606]1.0101{2.9126]4.4943(4.8076|3.8834(2.9702(6.0606] 0.909

STR |1.1184(1.0018]0.9893(0.9946]0.9772(0.9718|0.9729]0.9886[0.9756]0.9822(0.9916|0.9753]0.9861(0.9838

DTR (1.1708]0.9912(1.0369]1.0016{0.9986]0.9978(1.0037/0.9987]1.0128(0.9912]11.0044( 1.001 [0.9956]1.0101

BPR | 10® [ 10® [ 10" ] 10" | 10 [ 10" ] 10" | 102 [ 102 | 102° [ 102" | 102" | 102! [ 102
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Table 5. Comparative rates for numbers with double precision storage by double scrambling with
CxC and (C/2)x(C/2) chessboards

C 10 20 30 40 50 60 70 80 90 100 [ 110 | 120 | 130 [ 140

KTSR| O 0 0 ]0.0013{0.0008{0.0003]0.0002(0.0002]0.0005{0.0005{0.0003]0.0003{0.0002]0.0002

SSR {0.0098]0.0025{0.0011]0.0006{0.0004{0.0003]0.0002(0.0002/0.0001{0.0001{0.0001]0.0001{0.0001]0.0001

SR 0 0 0 ]2.2471{2.1052]1.0869]0.9523(0.9009]4.4943(4.854313.9603]3.9215(4.1666|3.0612

STR ]0.7197(0.6731]0.6375(0.6593]0.6351(0.6246|0.6135]0.5992(0.5976]0.6063(0.592710.5931]0.5859(0.5802

DTR (0.7547]0.6669(0.6742]0.6499(0.6252]0.6331{0.6288]0.6164]0.6127(0.6047]0.5895[0.59830.5855]0.5811

BPR | 107 [ 107 [ 10 ] 10 | 10 [ 10 ] 10 | 10 [ 10 | 10 [ 102 | 1020 | 102° [ 102

It is noteworthy that the chessboard can be three-dimensional [18]. This leads to further
decreasing the break-in probability. Indeed, the knight open tour problem has a far greater deal of
solutions for a starting position of the knight on a chessboard of size CxCxC'. For a depth position
z, on a chessboard of size CxCxC, where z, € {I,_C}, denote the number of solutions starting off

position (cube) {x,, »,,z} by S,(C;x,,»,z). There are C° starting positions on the chessboard

of size CxCxC. For a definite chessboard size and a definite starting position, there are four
versions of the pseudorandom walk for every face of the chessboard. Having six faces, the number

of versions of the pseudorandom walk is 6-4, and a raw estimation of the break-in probability is

1
6-45-C°-S,(C;x,, 1,5 2,)

Pbrea.k—in = (19)
being much lower than (17) for the same number C. However, estimation (19) is made for a one
sequence of C layers of the three-dimensional chessboard (successively from layer 1 to layer C,
going through a face). Altogether there are C! such sequences. So, a more precise estimation is

. 1
break-in 6_4C.C!-C3-SA(C;xlayl’Zl).

(20)

It is expected that an 8 x8x8 chessboard has far more than 10'* knight open tours for a starting
position, so S, (8; x,, ,, 2 ) >10" at least. Therefore, the break-in probability (20) is

1 1

])break—in = 8 3 - <10_26 (21)
6-4°-818°-S,(C;x,, v, 2,) 8117488189440-5,(8; x,, ¥,,2,)

for an 8x8x8 chessboard. However, computing knight open tours on a three-dimensional
chessboard may run into known computational issues [15, 16, 19], where searching for a specific
knight pseudorandom walk may become intractable (when it cannot be completed within reasonable
amount of time) due to a significantly deep “path” [20]. After all, the existence of solutions of the
knight open tour problem on three-dimensional chessboards has not been proved yet for any size.



Ukrainian Journal of Information Systems and Data Science Volume 2, Issue 1, 2024

Discussion
Given a seed integer for a pseudorandom number generator, a distinct knight pseudorandom

walk (out of a manifold of pseudorandom walks) is built online. This means that the scrambled data
vector is built online as well, 1. e. every next knight move is immediately followed by moving an
entry of array (1) to a specific place. As any knight open tour algorithm has linear runtime
complexity [15], the knight-open-tour scrambler does not make it any (significantly) longer than
other scramblers.

Square chessboards are better than non-squarely-shaped chessboards as they contain richer
manifolds of knight pseudorandom walks. Indeed, cornered start positions of the knight produce
poorer manifolds. A square chessboard has the fewest corner-like start positions. Contrary to that, a
rectangular chessboard has more corner-like start positions closer to the shorter side. Say, a
horizontally stretched chessboard has corner-like start positions closer to the left and right sides
because the knight is more “squeezed” there having fewer possible moves upwards and downwards
than in the direction to the center.

The estimations of BPRs in Tables 1-5 may look too pessimistic, but they are considered as a
“lowest” bound of the gain in security provided by the knight-open-tour scrambler. This bound
might have been much bettered for bigger chessboards, but the number of the knight open tour
problem solutions is itself an open question for such chessboards. However, if to step aside a little
from the worst-case scenario, by assuming that another 10 squares along the chessboard dimension
decreases the BPR by the factor of 2, a BPR estimate for C =140 is 10° to 107**. It is also likely
that the estimations by (18) and (21) are better in most non-corner-like cases. Owing to using the
ratios, the reported comparative rates are expected to be independent of the hardware. However, it is
worth noting that the real-time operation speed of the knight-open-tour scrambler has a limit being
determined by the hardware performance. Thus, 19600 double-precision values are scrambled
within 150 milliseconds on a single CPU Intel Core 15-7200U@2.50GHz, which is 7.975 Mb/s in
terms of the speed. This means that the speed of streaming data intended for scrambling must not
exceed 7.975 Mb/s for such a hardware. This limit, being the worst-case scenario, keeps roughly the
same owing to the linear runtime complexity of the knight open tour algorithm. Moreover, the limit
is quite comparable to the speed of shuffler-based scrambling and scrambling by pseudorandom
binary numbers generated with using linear-feedback shift registers. Nevertheless, no limits exist
for data privacy and storage purposes, where the data are stationary and the only intention is to store
it securely protected.

Whichever the chessboard size is, the number of chessboard squares must be not fewer than
the data length by (5). Obviously, the redundant chessboard squares are not used in the case when a
multidimensional data array has fewer entries than the number of chessboard squares.

Conclusion
Multidimensional data array (1) is scrambled into array (7) by starting position (6) and

algorithm A4, whereupon the scrambled data array (10) has format (8) with indexation by (11)—(13).
To further improve balance of the scrambling simplicity and productivity, solutions of the knight
open tour problem are used. The break-in probability is dramatically decreased by taking into
account a knight pseudorandom walk manifold for a starting position on a given chessboard. The
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number of possible solutions is gigantic for an 8x8 chessboard, let alone bigger chessboards. Thus,
a pessimistic estimation of the break-in probability for an 8x8 chessboard is less than 107'°. A
similarly expected estimation for an 8x8x8 chessboard is less than 107*°. Meanwhile, the
similarity index is acceptable, rapidly dropping as the chessboard size is increased (for bigger
multidimensional data arrays).

Compared to an ordinary generator of pseudorandom numbers, the knight-open-tour
scrambler shuffles data also, having the same computational efficiency, but it has 10'° to 10*' times
lower break-in probability depending on the chessboard size and the starting position of the knight.
A knight open tour problem solution, also referred to as a knight pseudorandom walk, is determined
by the chessboard size, the starting position, the way to vectorize the knight pseudorandom walk,
and the pseudorandom number generator seed allowing to specifically move the knight onward
through situations with multiple possible moves of the knight.

From the practical point of view, the knight-open-tour scrambler has a limited operation speed
of 7.975 Mb/s while the data is streamed, whereas there is no such a limitation in securely storing
stationary data. The data dimensionality has no impact on the scrambler performance, but the
chessboard size should be consistent with the data length. Overall, the knight-open-tour scrambler is
mainly intended for private use and corporate body security purposes including business and
governmental agencies.
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PisHOMaHITTA NnceBaoBMNaAKOBUX 6/1yKaHb LLAXOBOro KOHA ANA
cKpembtoBaHHA 6araToBUMIPHUX AaHUX

Baaum PomaHioK

AHoTauin

3aza4a BiAKPUTOrO LMKAY LLIAXOBOrO KOHA MosArae y nobynosi NOCNAig0BHOCTI XOA4iB LAX0OBOro KOHA, AKa
MOBHICTIO NMOKPMBAE LIAxoBy AOLWKYy 6e3 NoBTOpiB, Ae NOYaTKOBE Ta KiHLEBE MOJIOMKEHHA € 3aBXAMW PI3SHUMM.
P03B’A30K 3a4a4i BigKpUTOro LMKY LWAXOBOro KOHA noAibHuiA A0 NOCNifAOBHOCTI NCEBAOBUNAAKOBUX YMCen, 3
AKMMM MOXKHa BifobpasnTh AaHi y KOpUcHy iHbopmauito 63 MOXKAMBOCTI i UNTAHHA. 3a4a4a BiAKPUTOrO LUMKAY
LLIAaXOBOr0 KOHA A1 MEBHOMO CTapPTOBOrO MOJIOKEHHA MA€E Pi3HOMAaHITTA PO3B’A3KIB, KiNbKICTb AKMUX 3a/1€KUTb Bif,
pO3Mipy LUAxOoBOi [AOWKKW. PO3B’A3KM 3ajadvi BiZAKPUTOrO LMKAY LIAXOBOMO KOHA BUMNALAOTb fAK HMOro
ncesaoBunagKose 6yKaHHA abo AK BUNAAKOBA NOCNIAOBHICTb MOro NonoXKeHb. Lli po3B’s3Ku BUKOPUCTOBYIOTHCA
ON1A NoJanblloro MOKpaweHHA 6anaHcy npocTtoT cKpembtoBaHHA Ta NPOAYKTUBHOCTI, A€ TFONOBHUMM
MOKa3HWKaMM € MMOBIPHICTb 371aMy Ta iHAEKC noAibHocTi. MMOBIpHICTb 3n1amy CYTTEBO 3MEHLLYETLCA 3aBAAKM
Pi3HOMaHITTIO NCeBAOBMNAAKOBUX OAyKaHb LIAXOBOFO KOHA A/1A MEBHOrO CTAapTOBOrO MOJOMKEHHA Ha AaHil
WwaxoBin gowui. MecuMicTMYHA OLiHKA MMOBIPHOCTI 371aMy ANS LWAXOBOI AOWKKM PO3MipoM 8x8 € MeHLOo 3a
107'°. AHanoriuHa OLHKa ANA LAX0BOi JOLWKM po3mipom 8x8x8 € meHLWwow 3a 1072°. KoHKpeTHa peanisaLis
nceBAoBMMNAAKOBOrO H6/lyKaHHA LIAX0BOro KOHA OYyAyeTbCA B PEXMMI OHNAMH 32 3a43aHOr0 NOYaTKOBOrO LLOro
ONA reHepaTopa NCeBAOBMMNAAKOBUX Yncen. BeKTop AaHUX Mnicna cKpembatoBaHHA TaKoX OyAyeTbca B pexumi
OHNaMH 3a NiHiMHOT YacoBoi cknaaHoCTI. IHAEeKC NOAIBHOCTI € NPUNHATHUM. BiH CTPIMKO naaae 3i 3pocTaHHAM
po3Mipy wWaxoBoi AOWKKM (ana 6inbwmx macueiB 6araToBMMipHMX p[aHux). KOHKpeTHe nceBLOBMNAZLKOBE
6/1yKaHHA LLIAXOBOr0 KOHA BM3HAYaETbCA PO3MIPOM LUAXOBOI AOLIKM, MOYATKOBUM MONOMKEHHAM, METOZOM
BEKTOPM3aLii NceBAOBUMNAAKOBOrO 6/yKaHHA LUAXOBOTO KOHA, @ TaKOX MOYATKOBUM LiAMM ANs reHepaTopa
ncesfoBunagkosmnx ymcen. Lli napameTpu BM3HayaloTb cneumdiuHUA pyx KOHA Yy CUTyaLifaX, KOAW MOCTatoTb
MHOMMHHI BapiaHTW noganbluoro pyxy. CKpembaep Ha OCHOBI BiKPUTOTO LMKAY LLIAXOBOrO KOHA Mae Big 10™
0 10 pasis MeHLLy AMOBIPHICTb 31aMy, NOPIBHAHO 3i 3BUYAITHMM NCEBAOBMNAAKOBMM reHepaToOpOM, 3a1eKHO
Bi4, pPO3Mipy LIAx0BOT AOLIKMU Ta MOYATKOBOIO MOJIOXEHHSA LLUAXOBOr0O KOHS.

KniouoBi cnoBa: ckpembitoBaHHA AaHUX; MCeBOOBUMNAAKOBE O/yKaHHA LAXOBOFO KOHA; MMOBIPHICTb
3namy; piseHb noAgibHocTi.
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