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The knight open tour problem is to build a sequence of knight moves 
covering a chessboard completely, without repetitions, where the starting 
position and ending position are always different. A solution of the knight 
open tour problem is similar to a sequence of pseudorandom numbers 
used to map data into non-readable yet usable information. The knight 
open tour problem has a manifold of solutions for a starting position of the 
knight depending on the chessboard size. Solutions of the knight open tour 
problem, which appear like a random series of knight positions, i. e. a 
pseudorandom walk, are used to further improve balance of the 
scrambling simplicity and productivity, where the main indicators are the 
break-in probability and similarity index. The break-in probability is 
dramatically decreased by taking into account a knight pseudorandom 
walk manifold for a starting position on a given chessboard. A pessimistic 
estimation of the break-in probability for an 8 8  chessboard is less than 

1610 . A similarly expected estimation for an  8 8 8  chessboard is less 
than 2610 . A distinct knight pseudorandom walk (out of a manifold of 
pseudorandom walks) is built online by a given seed integer for a 
pseudorandom number generator. The scrambled data vector is built 
online as well in linear runtime complexity. Meanwhile, the similarity index 
is acceptable, rapidly dropping as the chessboard size is increased (for 
bigger multidimensional data arrays). A knight pseudorandom walk is 
determined by the chessboard size, the starting position, the way to 
vectorize the knight pseudorandom walk, and the pseudorandom number 
generator seed allowing to specifically move the knight onward through 
situations with multiple possible moves of the knight. The knight-open-
tour scrambler has 1610  to 2110  times lower break-in probability 
compared to an ordinary pseudorandom number generator, depending on 
the chessboard size and the starting position of the knight. 

DOI: 10.31558/2786-9482.2024.1.1 

Introduction 
The main technical purpose of data privacy is to achieve sufficiently low likelihood of 

deliberately intruding, spoofing, hacking, delaying, distorting, etc. [1, 2]. In particular, data is 
scrambled by altering or shuffling its entries in accordance with an algorithm whose return is 
difficult to decipher while the scrambled data is still usable for legitimate demonstration [3, 4]. 
Within personal and limited access use, the algorithm must be unknown for attackers, or at least it 
must be unlikely to determine it within reasonable time [5, 6]. Another plausible requirement is to 
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maintain the algorithm as simple as possible due to its frequent application should not affect the 
operation speed [7, 8]. 

Basically, the requirement of scrambling algorithm simplicity often prevents from using 
shufflers based on pseudorandom number generators [9]. The latter utilize rather complex routines 
for generating a stream of pseudorandom numbers, but the main reason is the seed change [10, 11]. 
Although the range for the initial value of a pseudorandom sequence is sufficiently wide, the 
information about the seed change should be constantly sent to the recipient that increases the 
likelihood of break-in, if the type of the pseudorandom number generator is known [12]. On the 
other hand, cipher algorithms and cryptographic hashes are high-quality pseudorandom number 
generators, but generally they are considerably slower than non-cryptographic random number 
generators [13, 14]. Therefore, it is still desirable to develop a much wider list of simple and fast 
pseudorandom number generators for tasks of scrambling, regardless of the publicity of its use. 

Goal and tasks 
Issuing from the growing demands for security and reliability of data privacy and storage 

policy, the goal is to suggest a new scrambling technique which would provide improved 
cryptographic properties compared to a peer scrambling technique. The improved cryptographic 
properties imply decreasing the likelihood of break-in along with decreasing similarity between the 
initially given data and the scrambled data.  

One of the simplest algorithms having been studied for possible scrambling is based on 
building solutions to the knight open tour problem [15, 16]. In fact, there are a few such algorithms, 
both exact and heuristic, which have slightly differing computational efficiency and coverage (some 
solutions may be omitted by a heuristic, whereas they are found by an exact approach, although not 
always within a reasonable time). A solution of the knight open tour problem is similar to a 
sequence of pseudorandom numbers used to map data into non-readable yet usable information. The 
first task is to describe the solution application. The second task is to estimate its main computable 
parameters for the worst-case scenario compared to an ordinary generator of pseudorandom 
numbers. The break-in probability and similarity rate will be estimated under the same case along 
with estimating operation speed and other limitations. 

Pseudorandom walk 
Denote by  

  I FuU  (1) 

an N-dimensional array of data, where 

 
1

N

n

n

F M


  (2) 

is the format of the array,  

   1

N
n nI i   (3) 

is its indexation with indices 
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  1,n ni M  1,n N  , (4) 

nM  is the length of dimension n ,  \ 1nM  , and Iu  is a numerical or symbolical entry indexed 

by (3), (4). The total number of entries in array (1) is: 

 
1

N

n

n

L M


 . (5) 

A scrambler s  must take only the starting position: 

  (1)
1 1

N

n n
I i


  by  (1) 1,n ni M  1,n N   (6) 

for an algorithm A , whereupon the scrambled data is an array 

  1, ,s A IY U . (7) 

Obviously, the number of entries of array (7) is (5), but its format may be changed from (2) into 

 
1

B

b

b

G K


  (8) 

by 

 
1

B

b

b

L K


 . (9) 

So, 

  J GyY  (10) 

is the scrambled B -dimensional data array of format (8) with indexation  

   1

B
b bJ j   (11) 

and indices 

  1,b bj K  1,b B  , (12) 

by dimension b  of length bK ,  \ 1bK  , where 

    J I IJy u   . (13) 

In particular, 1B  , i. e. array (1) is scrambled into a vector (7) of length (9), where 

 
1j L

y


   Y  ( 1,j L ). (14) 

Another possibility, less applicable than (14), is dimensionality reduction. For instance, an 

1 2 3M M M   matrix (that can represent some color image for 3 3M  ) is scrambled into an 

1 2 3M M M , 1 2 3M M M , or 1 3 2M M M  matrix, regardless of possible transposition. In 

vectorizing-based applications, an 1 2 3M M M   matrix data is scrambled into a 1 2 31 M M M  



Ukrainian Journal of Information Systems and Data Science               Volume 2, Issue 1, 2024 

 

4 

vector (obviously, a column vector is also possible). 
The knight open tour problem whose solutions appear like a random series of knight positions 

[15, 16], i. e. a pseudorandom walk, is a promising approach to scrambling. The knight starts its 

open tour at a horizontal position 1x  and a vertical position 1y  on a chessboard of size C C , where 

 1 1,x C  and  1 1,y C . Then the knight moves onward according to an algorithm. In this way, 

the chessboard is completely covered by the knight, and a definite sequence of 2C  integers 
indicating the successive positions of the knight is formed. This sequence can be formed in two 
ways, each of which has two versions. If the chessboard squares are enumerated by the number of 
the knight move, then a matrix  

 ik C Cc B ,  

where ikc  is the number of the knight move at chessboard square  ,i k  ( 1ikc   for 1i y , 1k x ), is 

vectorized either by concatenating its columns or concatenating its rows. On the other hand, a 
vector  

21j C
m


   M   

is formed, where either 

  1jm C i k     for ikc j  (15) 

or 

  1jm C k i     for ikc j . (16) 

So, the knight pseudorandom walk can be represented either by the vectorized matrix B  or vector 
M . It is easy to see that the two versions of the vectorized matrix B  are directly connected. 
Knowing one version, the other one is obtained via a simple permutation pattern. The two versions 
of vector M  by (15) or (16) are directly connected as well, where one version is obtained from the 
other one via another simple pattern which is the inverse to either (15) or (16). 

Scrambler estimations and parameters 
The break-in probability can be estimated as follows. The knight open tour problem has a 

great deal of solutions for a starting position of the knight depending on the chessboard size C C . 

Denote this number by  1 1; ,AS C x y . There are 2C  starting positions on the chessboard of size 

C C . For a definite chessboard size and a definite starting position, there are four versions of the 

pseudorandom walk for a distinct solution out of  1 1; ,AS C x y  solutions. Hence, an estimation of 

the break-in probability is 

 
 break-in 2

1 1

1

4 ; ,A

P
C S C x y




. (17) 

On an 8 8  chessboard, for instance, there are more than 1410  knight open tours for a starting 

position, i. e.   14
1 18; , 10AS x y   [17]. Therefore, the break-in probability (17) is 
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   

16
break-in 2

1 1 1 1

1 1
10

4 8 8; , 256 8; ,A A

P
S x y S x y

  
  

 (18) 

for an 8 8  chessboard. The ending position of the knight cannot be  1 1,x y  but distinct open tours 

can end at the same position. However, number  1 1; ,AS C x y  depends on the starting position. If it 

is closer to a corner of the chessboard, this number is less than the number of knight open tours 
starting closer to the chessboard center. This is explained by the knight at a corner has fewer ways 
to move onward. Thus, many tours have a zigzag pattern on the chessboard borders (Figure 1). If 
the chessboard size is increased, the pattern may remain (Figure 2). 

 

 

 

Figure 1. A set of 12 distinct pseudorandom walks on an 8 8  chessboard, each of which starts at 

the same square (from the top left corner), where the zigzag border pattern is seen 

Nevertheless, the zigzag pattern becomes less influential on bigger chessboards. It is quite 
apparent by comparing pseudorandom walks in Figure 2 to those in Figure 1. This means it is more 

likely that number  1 12 ; ,AS C x y  varies relatively less across all possible 24C  starting positions on 

a    2 2C C  chessboard than, say, number  1 1; ,AS C x y  varying across all possible 2C  starting 

positions on a C C  chessboard. Therefore, bigger chessboards are more efficient to produce 

higher rates of randomness. 
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Figure 2. A set of four various pseudorandom walks on a 32 32  chessboard, each of which starts 
from the top left corner, where the zigzag border pattern is still seen reminiscent of that in Figure 1 

So, starting an open tour off one of four corners, either close to it or peculiarly at chessboard 

squares  1,1 ,  1, C ,  ,1C ,  ,C C , is the worst-case scenario for break-in probability (17). In 

such a case, the break-in probability is higher than in any other case. Compared to shuffler-based 
scrambling, it is important to know a ratio of break-in probability (17) to the shuffler-based 

scrambling probability (which, obviously, is 1L  as the shuffler algorithm is presumed to be known 
and it can be defined by the position of an integer value from 1 to L ). This ratio, called the break-in 
probability rate (BPR) for further consideration, must be estimated under the worst-case scenario 
with using (18) as reference value. Other important parameters are the similarity index and 
computation time ratio. The latter is calculated separately for scrambling and descrambling as a 
ratio of knight-open-tour time to shuffler time. The respective scrambling time rate (STR) and 
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descrambling time rate (DTR) must be close. The similarity index is calculated as the element-wise 
number of coincidences in multidimensional data array (1) and the scrambled data array (10) 
divided by L . This index is written as a knight-open-tour scrambler rate (KTSR) and a shuffler 
scrambler rate (SSR), whereupon a similarity rate (SR) is calculated as a ratio of KTSR to SSR. 

Computational experiments are carried out on a single CPU Intel Core i5-7200U@2.50GHz 
in Matlab 2018a. The data are intended to emulate streaming images, so for this purpose integers 
between 0 and 255 are generated by a pseudorandom number generator with a known seed. Table 1 
presents the mentioned parameters for signed 16-bit integers between 0 and 255 in 

multidimensional data arrays for 2L C  (here and below the comparative rates are averaged over 
100 repetitions), where it is clearly seen that the knight-open-tour scrambler and shuffler scrambler 
have roughly the same operation speed. SR varies badly, though, for smaller sizes of the 
chessboard. The estimation of BPR is made with respect to (18), where the tour starts at chessboard 

square  1,1 . Approximately the same parameters hold for numbers with single precision storage 

(Table 2) and numbers with double precision storage (Table 3) almost independently of the data 
dimensionality (in Matlab, vectorization or reshaping arrays is executed within a few 
microseconds), where the numbers are generated starting at the same seed of the pseudorandom 
number generator. Nevertheless, KTSR and SSR are a few times smaller than those in Table 1. 

Overall, the scrambler is defined by four parameters: the chessboard size, the starting 

position, a specific integer A  determining one of  1 1; ,AS C x y  open tours, and one of four ways to 

obtain a 21 C  vector representing the knight pseudorandom walk. Integer A  could be called the 

walk seed and it is a number between 1 and  1 1; ,AS C x y :  

  1 11, ; , A AS C x y .  

This integer predetermines a distinct knight pseudorandom walk by setting the pseudorandom 
number generator seed to a definite integer. Algorithm A  building the open tour online frequently 
stumbles over situations when there are a few possible onward moves of the knight. One of such 
moves is further selected by generating a random value and comparing a threshold to this value. 

Table 1. Comparative rates for signed 16-bit integers between 0 and 255 

C 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

KTSR 0.0339 0.0064 0.0046 0.0047 0.0051 0.0042 0.0043 0.0042 0.0042 0.0042 0.004 0.004 0.004 0.004 

SSR 0.0134 0.0063 0.005 0.0045 0.0044 0.0039 0.004 0.0041 0.004 0.004 0.004 0.004 0.004 0.004 

SR 2.5298 1.0278 0.922 1.044 1.1799 1.0676 1.0672 1.0194 1.0583 1.0474 1.0006 1.0059 1.0046 0.9925 

STR 1.007 1.1648 0.9676 1 0.99 0.9961 0.9717 0.9799 0.9953 0.9637 0.9786 0.9966 0.9672 0.9845 

DTR 1.0863 1.1381 1.062 1.0022 0.9934 0.957 1.0126 0.9986 0.9858 1.0097 1.008 1.0123 0.9979 1.0134 

BPR 10–16 10–16 10–16 10–16 10–16 10–16 10–16 10–17 10–17 10–17 10–17 10–17 10–17 10–17 
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Table 2. Comparative rates for numbers with single precision storage 

C 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

KTSR 0.03 0.0025 0.0011 0.0006 0.0012 0.0003 0.0004 0.0002 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 

SSR 0.0102 0.0027 0.001 0.0007 0.0004 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

SR 2.9411 0.9345 1.0638 0.9615 2.9411 1.1627 1.9607 1.0309 1.7857 3.2258 1.1111 0.9345 0.8849 1.8867 

STR 1.0208 1.0489 0.9749 1.0002 0.9649 0.9911 0.988 0.9781 0.9782 0.9829 0.9705 0.9802 0.9667 0.9877 

DTR 1.1964 1.0257 1.0046 0.9985 1.0009 0.9953 1.0032 1.0192 1.0039 1.004 1.0063 0.9963 1.0081 1.0128 

BPR 10–16 10–16 10–16 10–16 10–16 10–16 10–16 10–17 10–17 10–17 10–17 10–17 10–17 10–17 

 
Meanwhile, a scrambling technique can be applied multiple times. Thus, another quadruple of 

scrambler parameters should be assigned. Table 4 presents the comparative rates for numbers with 
double precision storage by double scrambling with the same chessboard size, where the tour at the 

second stage scrambling starts at chessboard square  4, 4 . In general, these rates do not much 

differ from those in Tables 1–3, but BPR now is much better. KTSR and SSR are comparable to 
those in Tables 2 and 3. However, if the second stage scrambling chessboard is of size 

   2 2C C , then KTSR is improved in about six times (Table 5). In addition, STR and DTR, 

varying between 0.5802 and 0.7547, are much favorable for the knight-open-tour scrambler. Its 
break-in probability increases, though, due to the smaller second stage scrambling chessboard. The 
decrement is hardly noticeable, anyway. This is an acceptable tradeoff for decreasing similarity 
along with speeding up the scrambling (descrambling) process. 

Table 3. Comparative rates for numbers with double precision storage 

C 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

KTSR 0.03 0.0025 0.0011 0.0006 0.0012 0.0003 0.0004 0.0002 0.0002 0.0003 0.0001 0.0001 0.0001 0.0001 

SSR 0.0102 0.0027 0.001 0.0007 0.0004 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

SR 2.9411 0.9345 1.0638 0.9615 2.9411 1.1627 1.9607 1.0309 1.7857 3.2258 1.1111 0.9345 0.8849 1.8867 

STR 1.0555 1.0086 0.9855 1.0048 0.9898 0.9811 0.988 0.9822 0.9726 0.9973 0.974 0.9701 0.9859 0.9931 

DTR 1.2022 1.0001 1.0542 0.9997 1.0339 0.9759 0.9969 1.0064 1.0168 0.9984 1.0122 1.0023 0.9902 1.0099 

BPR 10–16 10–16 10–16 10–16 10–16 10–16 10–16 10–17 10–17 10–17 10–17 10–17 10–17 10–17 

Table 4. Comparative rates for numbers with double precision storage by double scrambling 

C 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

KTSR 0.02 0.0025 0 0.0019 0.0008 0.0017 0.0002 0.0005 0.0005 0.0005 0.0003 0.0002 0.0004 0.0001 

SSR 0.0095 0.0026 0.0014 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

SR 2.1052 0.9615 0 2.9126 1.8181 6.0606 1.0101 2.9126 4.4943 4.8076 3.8834 2.9702 6.0606 0.909 

STR 1.1184 1.0018 0.9893 0.9946 0.9772 0.9718 0.9729 0.9886 0.9756 0.9822 0.9916 0.9753 0.9861 0.9838 

DTR 1.1708 0.9912 1.0369 1.0016 0.9986 0.9978 1.0037 0.9987 1.0128 0.9912 1.0044 1.001 0.9956 1.0101 

BPR 10–18 10–18 10–19 10–19 10–19 10–19 10–19 10–20 10–20 10–20 10–21 10–21 10–21 10–21 
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Table 5. Comparative rates for numbers with double precision storage by double scrambling with 
C C  and    2 2C C  chessboards 

C 10 20 30 40 50 60 70 80 90 100 110 120 130 140 

KTSR 0 0 0 0.0013 0.0008 0.0003 0.0002 0.0002 0.0005 0.0005 0.0003 0.0003 0.0002 0.0002 

SSR 0.0098 0.0025 0.0011 0.0006 0.0004 0.0003 0.0002 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

SR 0 0 0 2.2471 2.1052 1.0869 0.9523 0.9009 4.4943 4.8543 3.9603 3.9215 4.1666 3.0612 

STR 0.7197 0.6731 0.6375 0.6593 0.6351 0.6246 0.6135 0.5992 0.5976 0.6063 0.5927 0.5931 0.5859 0.5802 

DTR 0.7547 0.6669 0.6742 0.6499 0.6252 0.6331 0.6288 0.6164 0.6127 0.6047 0.5895 0.5983 0.5855 0.5811 

BPR 10–17 10–17 10–18 10–18 10–18 10–18 10–18 10–19 10–19 10–19 10–20 10–20 10–20 10–20 

 

It is noteworthy that the chessboard can be three-dimensional [18]. This leads to further 
decreasing the break-in probability. Indeed, the knight open tour problem has a far greater deal of 

solutions for a starting position of the knight on a chessboard of size C C C  . For a depth position 

1z  on a chessboard of size C C C  , where  1 1,z C , denote the number of solutions starting off 

position (cube)  1 1 1, ,x y z  by  1 1 1; , ,AS C x y z . There are 3C  starting positions on the chessboard 

of size C C C  . For a definite chessboard size and a definite starting position, there are four 

versions of the pseudorandom walk for every face of the chessboard. Having six faces, the number 

of versions of the pseudorandom walk is 6 4C , and a raw estimation of the break-in probability is 

 
 break-in 3

1 1 1

1

6 4 ; , ,C
A

P
C S C x y z


  

 (19) 

being much lower than (17) for the same number C . However, estimation (19) is made for a one 

sequence of C  layers of the three-dimensional chessboard (successively from layer 1 to layer C , 

going through a face). Altogether there are !C  such sequences. So, a more precise estimation is 

 
 break-in 3

1 1 1

1

6 4 ! ; , ,C
A

P
C C S C x y z


   

. (20) 

It is expected that an 8 8 8   chessboard has far more than 1410  knight open tours for a starting 

position, so   14
1 1 18; , , 10AS x y z   at least. Therefore, the break-in probability (20) is 

 
   

26
break-in 8 3

1 1 1 1 1 1

1 1
10

6 4 8! 8 ; , , 8117488189440 8; , ,A A

P
S C x y z S x y z

  
    

 (21) 

for an 8 8 8   chessboard. However, computing knight open tours on a three-dimensional 

chessboard may run into known computational issues [15, 16, 19], where searching for a specific 
knight pseudorandom walk may become intractable (when it cannot be completed within reasonable 
amount of time) due to a significantly deep “path” [20]. After all, the existence of solutions of the 
knight open tour problem on three-dimensional chessboards has not been proved yet for any size. 
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Discussion 
Given a seed integer for a pseudorandom number generator, a distinct knight pseudorandom 

walk (out of a manifold of pseudorandom walks) is built online. This means that the scrambled data 
vector is built online as well, i. e. every next knight move is immediately followed by moving an 
entry of array (1) to a specific place. As any knight open tour algorithm has linear runtime 
complexity [15], the knight-open-tour scrambler does not make it any (significantly) longer than 
other scramblers. 

Square chessboards are better than non-squarely-shaped chessboards as they contain richer 
manifolds of knight pseudorandom walks. Indeed, cornered start positions of the knight produce 
poorer manifolds. A square chessboard has the fewest corner-like start positions. Contrary to that, a 
rectangular chessboard has more corner-like start positions closer to the shorter side. Say, a 
horizontally stretched chessboard has corner-like start positions closer to the left and right sides 
because the knight is more “squeezed” there having fewer possible moves upwards and downwards 
than in the direction to the center. 

The estimations of BPRs in Tables 1–5 may look too pessimistic, but they are considered as a 
“lowest” bound of the gain in security provided by the knight-open-tour scrambler. This bound 
might have been much bettered for bigger chessboards, but the number of the knight open tour 
problem solutions is itself an open question for such chessboards. However, if to step aside a little 
from the worst-case scenario, by assuming that another 10 squares along the chessboard dimension 

decreases the BPR by the factor of 2, a BPR estimate for 140C  is 2010  to 2210 . It is also likely 
that the estimations by (18) and (21) are better in most non-corner-like cases. Owing to using the 
ratios, the reported comparative rates are expected to be independent of the hardware. However, it is 
worth noting that the real-time operation speed of the knight-open-tour scrambler has a limit being 
determined by the hardware performance. Thus, 19600 double-precision values are scrambled 
within 150 milliseconds on a single CPU Intel Core i5-7200U@2.50GHz, which is 7.975 Mb/s in 
terms of the speed. This means that the speed of streaming data intended for scrambling must not 
exceed 7.975 Mb/s for such a hardware. This limit, being the worst-case scenario, keeps roughly the 
same owing to the linear runtime complexity of the knight open tour algorithm. Moreover, the limit 
is quite comparable to the speed of shuffler-based scrambling and scrambling by pseudorandom 
binary numbers generated with using linear-feedback shift registers. Nevertheless, no limits exist 
for data privacy and storage purposes, where the data are stationary and the only intention is to store 
it securely protected. 

Whichever the chessboard size is, the number of chessboard squares must be not fewer than 
the data length by (5). Obviously, the redundant chessboard squares are not used in the case when a 
multidimensional data array has fewer entries than the number of chessboard squares.  

Conclusion 
Multidimensional data array (1) is scrambled into array (7) by starting position (6) and 

algorithm A , whereupon the scrambled data array (10) has format (8) with indexation by (11)–(13). 
To further improve balance of the scrambling simplicity and productivity, solutions of the knight 
open tour problem are used. The break-in probability is dramatically decreased by taking into 
account a knight pseudorandom walk manifold for a starting position on a given chessboard. The 
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number of possible solutions is gigantic for an 8 8  chessboard, let alone bigger chessboards. Thus, 

a pessimistic estimation of the break-in probability for an 8 8  chessboard is less than 1610 . A 

similarly expected estimation for an 8 8 8   chessboard is less than 2610 . Meanwhile, the 

similarity index is acceptable, rapidly dropping as the chessboard size is increased (for bigger 
multidimensional data arrays). 

Compared to an ordinary generator of pseudorandom numbers, the knight-open-tour 

scrambler shuffles data also, having the same computational efficiency, but it has 1610  to 2110  times 
lower break-in probability depending on the chessboard size and the starting position of the knight. 
A knight open tour problem solution, also referred to as a knight pseudorandom walk, is determined 
by the chessboard size, the starting position, the way to vectorize the knight pseudorandom walk, 
and the pseudorandom number generator seed allowing to specifically move the knight onward 
through situations with multiple possible moves of the knight. 

From the practical point of view, the knight-open-tour scrambler has a limited operation speed 
of 7.975 Mb/s while the data is streamed, whereas there is no such a limitation in securely storing 
stationary data. The data dimensionality has no impact on the scrambler performance, but the 
chessboard size should be consistent with the data length. Overall, the knight-open-tour scrambler is 
mainly intended for private use and corporate body security purposes including business and 
governmental agencies. 
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Різноманіття псевдовипадкових блукань шахового коня для 
скремблювання багатовимірних даних 

 
Вадим Романюк 

 
Анотація 
Задача відкритого циклу шахового коня полягає у побудові послідовності ходів шахового коня, яка 

повністю покриває шахову дошку без повторів, де початкове та кінцеве положення є завжди різними. 
Розв’язок задачі відкритого циклу шахового коня подібний до послідовності псевдовипадкових чисел, за 
якими можна відобразити дані у корисну інформацію без можливості її читання. Задача відкритого циклу 
шахового коня для певного стартового положення має різноманіття розв’язків, кількість яких залежить від 
розміру шахової дошки. Розв’язки задачі відкритого циклу шахового коня виглядають як його 
псевдовипадкове блукання або як випадкова послідовність його положень. Ці розв’язки використовуються 
для подальшого покращення балансу простоти скремблювання та продуктивності, де головними 
показниками є ймовірність зламу та індекс подібності. Ймовірність зламу суттєво зменшується завдяки 
різноманіттю псевдовипадкових блукань шахового коня для певного стартового положення на даній 
шаховій дошці. Песимістична оцінка ймовірності зламу для шахової дошки розміром 8×8 є меншою за 

1610 . Аналогічна оцінка для шахової дошки розміром 8×8×8 є меншою за 2610 . Конкретна реалізація 
псевдовипадкового блукання шахового коня будується в режимі онлайн за заданого початкового цілого 
для генератора псевдовипадкових чисел. Вектор даних після скремблювання також будується в режимі 
онлайн за лінійної часової складності. Індекс подібності є прийнятним. Він стрімко падає зі зростанням 
розміру шахової дошки (для більших масивів багатовимірних даних). Конкретне псевдовипадкове 
блукання шахового коня визначається розміром шахової дошки, початковим положенням, методом 
векторизації псевдовипадкового блукання шахового коня, а також початковим цілим для генератора 
псевдовипадкових чисел. Ці параметри визначають специфічний рух коня у ситуаціях, коли постають 
множинні варіанти подальшого руху. Скремблер на основі відкритого циклу шахового коня має від 1610  
до 2110  разів меншу ймовірність зламу, порівняно зі звичайним псевдовипадковим генератором, залежно 
від розміру шахової дошки та початкового положення шахового коня. 

Ключові слова: скремблювання даних; псевдовипадкове блукання шахового коня; ймовірність 
зламу; рівень подібності. 


